Perímetro finito y diferenciabilidad: superficies minimales

Fecha: 13 de Abril de 2023.
Hora: 10:15h.
Lugar: Sala de conferencias del IMAG.

Conferenciante: Antonio Córdoba (Universidad Autónoma de Madrid).

Resumen: Se tratará de ilustrar las ideas geométricas y analíticas subyacentes a la regularidad de superficies minimales, consideradas como fronteras de conjuntos de perímetro finito, contenidas en el trabajo de L. Caffarelli y A. Córdoba (An elementary regularity theory of minimal surfaces).

Sea D un conjunto abierto y acotado del espacio euclídeo y E un boreliano de perímetro finito. Existe entonces un conjunto M de perímetro mínimo entre todos los que coinciden con E fuera del dominio D.

La parte más intrincada de esta teoría consiste en demostrar que S, la parte de la frontera de M contenida en D, es una superficie diferenciable que satisface la ecuación de las superficies mínimas excepto, quizás, por un conjunto de singularidades cuya dimensión de Hausdorff es pequeña.

Más información

La programación y mantenimiento de las páginas web albergadas en este sitio se han realizado con Software Libre por Ruvic. Soluciones Informáticas

Logo de Ruvic. Soluciones informáticas

The programming and maintenance of web pages hosted on this site were made with Free Software by Ruvic. Soluciones Informáticas

Logo de Ruvic. Soluciones informáticas