Fecha: viernes, 15 de octubre de 2021.
Hora: 12:00 - 13:30h.
Conferenciante: Álvaro Ramos.
Resumen: Recall that $E(-1,\tau)$ is a homogeneous space with four-dimensional isometry group which is given by the total space of a fibration over $\mathbb{H}^2$ with bundle curvature $\tau$. Given a finite collection of simple closed curves $\Gamma$ in its asymptotic boundary, we provide sufficient conditions on $\Gamma$ so that there exists an area minimizing surface $\Sigma$ in $E(-1,\tau)$ with asymptotic boundary $\Gamma$. We also present necessary conditions for such a surface $\Sigma$ to exist. This is joint work with P. Klaser and A. Menezes.
Además de presencialmente, la charla se retransmitirá via zoom en la sala EINSTEIN UGR con contraseña 551312.


