Area Minimizing Surfaces in $E(-1,\tau)$

Fecha: viernes, 15 de octubre de 2021.
Hora: 12:00 - 13:30h.
Conferenciante: Álvaro Ramos. 

Resumen: Recall that $E(-1,\tau)$ is a homogeneous space with four-dimensional isometry group which is given by the total space of a fibration over $\mathbb{H}^2$ with bundle curvature $\tau$. Given a finite collection of simple closed curves $\Gamma$ in its asymptotic boundary, we provide sufficient conditions on $\Gamma$ so that there exists an area minimizing surface $\Sigma$ in $E(-1,\tau)$ with asymptotic boundary $\Gamma$. We also present necessary conditions for such a surface $\Sigma$ to exist. This is joint work with P. Klaser and A. Menezes.

Además de presencialmente, la charla se retransmitirá via zoom en la sala EINSTEIN UGR con contraseña 551312.

La programación y mantenimiento de las páginas web albergadas en este sitio se han realizado con Software Libre por Ruvic. Soluciones Informáticas

Logo de Ruvic. Soluciones informáticas

The programming and maintenance of web pages hosted on this site were made with Free Software by Ruvic. Soluciones Informáticas

Logo de Ruvic. Soluciones informáticas