Fecha: 1 de octubre de 2021.
Hora: 12:00h.
Lugar: Online en la Sala Einstein de la UGR con password 388576.
Author: David Kalaj, University of Montenegro.
Summary: We consider the Gaussian curvature conjecture of a minimal graph S over the unit disk. First of all we reduce the general conjecture to the estimating the Gaussian curvature of some Scherk’s type minimal surfaces over a quadrilateral inscribed in the unit disk containing the origin inside. As an application we improve so far the obtained upper estimates of Gaussian curvature at the point above the center. Further we obtain an optimal estimate of the Gaussian curvature at the point w over the center of the disk, provided w satisfies certain ”symmetric” conditions. The result extends a classical result of Finn and Osserman in 1964.


